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ABSTRACT 

The computer simulation of microdynamical processes often demands that the 
principle of reversibility be observed strictly. Five examples are presented to show how 
such reversibility can be achieved in fast integrations, in spite of the presence of first-order 
time derivatives. The examples are: the Lorentz equation, relativistic orbits, orbits in 
central coordinates, gyrocenter motion, and continuity equations. 

INTRODUCTION 

In classical physics, irreversibility is the result of coarse-graining our description 
of nature; it is not intrinsic to the laws of nature. Irreversibility, or increase of 
entropy, can be identified directly with loss of information [I]. 

When one programs classical physics, and especially when one aims at 
reproducing apparently irreversible phenomena (such as turbulent heating, growth 
of instabilities, transport phenomena, anomalous diffusion), it is essential that the 
program itself be reversible and that any increase of entropy be introduced only by 
the reduction of the information extracted from the computer, not by deleting 
information from the memory while it simulates the processes. 

Indeed, such programs ought to allow, by a change of sign of the time variable, 
for the exact tracing of a system back from the final state to the initial conditions 121. 
Any lack of perfection of such reversal should be due to rounding-off errors only, 
not to the program. There is only one point at which microscopic classical physics 
contains irreversibility: While Maxwell’s field equations themselves are time- 
reversible, the boundary and initial conditions must be formulated in such a 
manner as to represent outgoing signals only. A backward run, in order to reproduce 
the initial state, would have to be based on a record of the radiation which has 
escaped across the boundaries of the simulated volume, and this record would 
have to be fed in across the boundaries of the return run [3]. 

In sequential runs, the time is usually discretized and it is here that we need to 
watch for accidental irreversibility. While macroscopic equations, such as the 
diffusion equation, may involve a first-order time derivative, a$/&, of a field 
variable #, this does not happen in microscopic equations. These only contain the 
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second-order operator az/at2, readily turned into a finite-difference form which is 
symmetric in time: One uses the central-difference equivalent, 

aypt2 + h+1 - w2 + *n-1 
(At)2 * 

However, one must not be over-zealous and improve on the second-difference 
operator by adding higher-difference corrections. These corrections can, in a 
practical fast run, only be based upon past information. They are therefore biased. 
Only by going round several loops of iterations can one make sure that one’s 
fourth-difference correction is a fair compromise between past and future data 
(predictor-corrector routine). 

To become the basis for good statistics, a calculation which is intended to 
reproduce macroscopically irreversible phenomena from reversible microscopic 
dynamical equations, would normally involve a large number of identical elements 
or operations. 

Computer experiments such as those in [2], [4]-[9] are in this category. The 
individual operations have to be repeated so often that speed is at a premium. 
Only the simplest difference formulas are acceptable and nothing so slow as 
predictor-corrector procedures or planetary orbit routines can be used when one 
traces out the behavior of thousands of electrons in a tube, thousands of stars in 
galactic evolution, or thousands of charged particles in a plasma. 

Actually, there are many occasions when the use of such higher-order differences 
is not justified since the input (the sources, accelerations, etc.) is not as ideally 
smooth and differentiable as implied in the derivation of fourth-order difference 
coefficients. When one integrates the wave equation with a charge-current input, 
a lump of charge with a sharp boundary may suddenly and discontinuously sweep 
across a given spot and then cause “wild” fourth-differences of potential. (Again, 
only by laborious iteration of interval subdivision can one diagnose and treat a 
discontinuity with precision.) 

It is principally in the dynamical equations for classical particles or fluids that 
one runs into problems of keeping the finite-difference form of time differentials 
symmetric with respect to time reversal. We give here a few examples of occasions 
where reversibility posed a problem, and of how the problem could be resolved. 

I. THE LORENTZ FORCE 

The regular acceleration of a particle by a space-dependent force Is(x) can be 
dealt with symmetrically, just as explained in connection with the field equation, 
by using central differences: 

d2x 
xv 

%x+1 - 2% + X,-l 
W2 

m $F(&). 
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However, already the incorporation of a Lorentz force, or Coriolis forces in 
rotating frames of reference, raises a difficulty: How is one to represent the velocity 
symmetrically in the cross-product v x B ? 

The presence of a first derivative in the Lorentz equation does not constitute 
irreversibility. It is well known that electrodynamics is symmetric with regard to 
time reversal, provided one changes the sign of the magnetic field along with the 
sign of the time [lo]. 

The representation 
dx 

v=2i+ 

&I+1 - X,-l 

2At (3) 

springs to mind but has two disadvantages: 

(i) It refers only to alternate time steps and may lead to the build-up of 
discrepancies between even and odd sequences of points, i.e., between data at 

t = 0, 24 t, 4At.. . 

on the one hand and 

t = At, 3At, 5At.. . 

on the other. 

(ii) It implies prior knowledge of the next position &+l . 

Regarding the second point, one can resolve the difficulty readily by virtue of 
the linearity of the Lorentz equation in finite-difference form: 

%+1 - k + G-1 

WY 
= 5 [W + x""2jtxn-1 x B(x,)l . (4) 

Here x,+~ appears on both sides, but linearly, and a unique solution for x,+r can 
be obtained. The presence of x, on the left is sufficient to prevent the build-up of 
odd-even discrepancies as feared in (i). 

The algebraic solution of Eq. (4) for the three components of x,+r is not difficult. 
It is given explicitly in Section 4, Eq. (50) with definitions (36) and (37). Under 
conditions where E and B are constant along the orbit (independent of xJ one 
can solve the recursion formula between three successive x, analytically. One 
obtains a sequence of points along a cycloidal orbit, as expected in constant fields. 
This cycloid, however, deviates from the true cycloid to an extent which gets worse 
with increasing At. (More precisely, it is the projection normal to B which is a 
proper cycloid. Along B, one has free fall under steady acceleration, quadratic in t, 
and the difference equation gives exact answers.) 

Cycloids play a role in some slightly more sophisticated methods for developing 
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a reversible numerical integration of the Lorentz equation. The principle of not 
biassing one’s information at the nth step in favor of the past, and one’s ignorance 
of the future, restrict one to the assumption that E and B do not depart from their 
present values during a step centered on the position x, , and this is the best 
permissable assumption. One would wish to choose the best process of integration 
subject to this, albeit very restricted, information, and one would hope to avoid the 
deviations mentioned at the end of the previous paragraph. 

Constancy of E and B results in predicting intervals of cycloidal motion during 
a step centered at t = t, . The known present values of E and B define a certain 
class of cycloids and the known present position x, narrows down the possible 
cycloids further. It remains to decide with what velocity v, to launch the cycloid. 

One might think of this cycloid as a close approximation to the accurate orbit 
between tn - At/2 and t, + At/, . But since one wants to reach the position a 
full step ahead at tn+l = l). t + At, one must, from symmetry considerations, also 
look back as far as t, - At. This suggests the following procedure: One can choose 
that cycloid which, at time t, , passes through x, and has the curvature and other 
properties dictated by E(x,), B(x,), but which also passes through x,-~ at tnwl . 
On this cycloid, one then predicts the position x,+~ at t,+l . There, and then, the 
process is repeated with new field values. Each step is thus covered by two, possibly 
slightly different, cycloidal orbits through common termini. The resulting recurrence 
formula is given by Eq. (38) of Section IV. 

A more general interpretation of this procedure is given in [S]. At t, , solve the 
differential orbit equation analytically assuming constant fields E(x,), (B(x,) and 
initial position x, . Treat the initial velocities as open variables. Apply the solution 
first at t = t, - At and determine the velocities which yield the known position 
x,-~ . Use these velocities for advancing the general solution to t, + At. The 
velocities which are used at the next step, at tn+l , are, however, not identical with 
the velocities of arrival in the previous step. 

The cycloid-fitting procedure gives absolutely accurate results under constant 
field conditions, no matter how large a step is taken. Hackney [7] has made rapid 
progress and obtained useful results with steps as large as one-fifth of a complete 
gyro-revolution, The steps taken by Yu [8] et al. are nearly as large. These 
references demonstrate the speed and success of time-symmetric cycloid fitting 
when tracing several thousand charged particles through a constant magnetic 
field and the self-consistent time-dependent electric field. Hackney reproduces, 
in his “computer experiments”, the physically observed but mysterious phenom- 
enon of anomalous diffusion of a plasma across a magnetic field. Yu et al. 
predict exact operating conditions of crossed-field electron tubes whose functioning 
had previously been understood at best only qualitatively. Yu’s program is now 
being used to check out new tube designs for their performance on the computer 
before beginning construction in the workshop. 
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II. RELATIVISTIC ORBITS 

Under relativistic conditions, the mass M in the Lorentz equation 

(5) 

must be treated as time-dependent, its variation being given by the energy equation 

$ (MS) = qE * $ . 

Again, the appearance of first derivatives does not spoil the symmetry overall 
with respect to time reversal. 

One might try to apply the method of Yu, described in the preceding section: 
In constant fields E, B, Eqs. (5) and (6) possess exact solutions [l I] which involve 
sines and cosines of q&/M* and hyperbolic functions of qET/M*. Here T is proper 
time along the orbit and M* is the rest mass. One gets the solutions in this form 
after Lorentz-transforming to a frame of reference in which E and B appear parallel. 
Such a transformation is almost always possible by choosing the correct velocity 
at right angles to the plane which E and B defined prior to transformation. There 
is one exception, the case where E and B are perpendicular and of equal magnitude 
(Gaussian units). In this latter case [12], the orbit coordinates become cubic 
functions of 7. 

Yu’s method, then, would be to fit successive branches of these generalized 
cycloids or cubits together, always determining the available orbit parameters 
from present and previous positions. This method would be practical if one could 
progress in equal intervals of proper time T. However, such progression does not, 
in general, lead to equal intervals in observer’s time t and the method is thus 
restricted to situations where a prepared record of the field is available in advance, 
allowing easy interpolation to any value of t. 

More commonly, and more realistically, a record of the electromagnetic field 
has to be built up as the positions of the particles become known, and a field 
equation-essentially the wave equation with sources-calls for integration in 
equal steps oft. In principle, one therefore has to extend the spirit of Yu’s method 
to the determination of the step size AT- (in addition to the orbit velocities), which 
will lead to the correct tnel starting back from tn . Furthermore, the next step dT+ 

must be chosen to give the preset value of tn+l . In each case a cubic, or a transcen- 
dental equation involving hyperbolic and circular functions, has to be solved and 
the method is likely to become uneconomically slow. 

Instead, the following finite-difference versions of (5) and (6) can be tried: 
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The left in (5) may be written 

(7) 

after substitution from (6). The acceleration and the velocity can be replaced as 
in (2) and (3), which leads to 

M, xn+1 -gn2+ h-1 / yn . X.+12jt%-l Xn+12;tL1 

- q(E, + x"+12jtx'+1 x B,). - (8) 

For Eq. (6) one can write 

M n+1 
-- =@L+,+En 

n &3 2 * (x,+1 - x9&>, (9) 

which is preferable to 

M la+1 -  A&-, = 5 En l @,+I -  %+I)  (10) 

since this last recursion formula may lead to divergence between odd and even 
mass values. The sequential procedure for solving the acceleration and mass 
equations is to treat (8) as a quadratic equation for x,,, , assuming that the fields 
and the mass had been advanced as far as tn , then to determine En+, from the 
particle data at t,+l and to advance M to tn+l by means of (9). Such a procedure has 
been employed successfully by Burn [ 13 ] in a computer simulation of sheet pinch 
dynamics. The calculations of Burn involved only variations with time and with 
one space component, x, but x- and t-dependent y- and z-velocities were taken into 
account in the Lorentz term. Solving the quadratic presented no serious problems 
since the relativistic effects were small; iterations, starting with initial neglect of 
the quadratic term, converged rapidly and left no doubt regarding the choice of a 
sign for the square roots. 

To avoid the appearance of quadratic terms in the unknown xnfl , the dyadic 
(dx/dt) (dx/dt) in (7) can be replaced by 

1 x,+1 - %I x92 - X,-l + ; x, --t%-l xn+>; x, 
?i At At (11) 

With this replacement, the Lorentz equation becomes linear in x,+~ . Burn has 
tested such a linearized version of the procedure and found it somewhat faster 
than solving the quadratic. 
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Summarizing, the time-symmetric finite difference replacements of derivatives 
are given by (3) in the v x B term, by (2) in the first term of expression (7), by (11) 
in the second term of expression (7), and by (9) in the energy Eq. (6). Results 
obtained by this method will be published, when enough runs on “sheet pinches” 
have been completed, in the plasma literature. Here we only present the results of 
some accuracy and stability tests, namely runs with constant electric and zero 
magnetic field. 

For these test conditions the problem is one-dimensional, displacement 
measured from a suitable origin becomes proportional to the mass according to 
Eq. (9), and the finite-difference version of (5), with substitutions as indicated by 
(7), (2), and (11) becomes 

wLvf?2+1 - 2wt + w&-l) + wTz+1- M,)(M, - M,-,) = qW(dt)2/c2 

The corresponding differential equation has the solution 

M = [M*2 + qvyt - t*)2/c2]1/2 

with M* identifiable as the rest mass, and t* another initial-value constant. 
The recurrence relation was run in steps giving approximately one-quarter rest- 

mass increments (qE d t/c N &M*). Some fifty steps in the deceleration phase 
permitted fitting the (M, t)-relation by a hyperbola with an error in MZ of less 
then 0.0007M*2. Fifty subsequent steps in the accelerating phase could be fitted 
similarly and the fitted rest mass turned out to be the same. A displacement in t* 
occurred during the few steps near the turn-around, amounting to “jolt” of the 
hyperbola by 0.15 dt. During turn-around, the rest mass, calculated by fitting 
a rectangular hyperbola to two neighboring (MC, qEt) values, undergoes a 
temporary 8% increase which corrects itself in the next few steps. A similar test 
with twice the step size gave hyperbolic (M, t) graphs with an M2 error of 0.003M*2 
and a “jolt” of 0.3rlt, and again the same “best” M* for acceleration and 
deceleration. 

III. ORBITS IN CYLINDRICAL COORDINATES 

In an r, t? geometry, the centrifugal as well as the Coriolis forces introduce first 
derivatives into the dynamical equations and one has to find a time-symmetric 
finite-difference representation of these derivatives. 

An r, 8 coordinate system is desirable whenever the dominant symmetry of the 
field of force is cylindrical or spherical, such as in planetary motion. Moreover, 
the condition of field decay towards infinity is more readily applied in these central 
coordinate systems than in an (x, y), or (x, y, z) geometry. 
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Dodging the centrifugal term by reverting to Cartesian coordinates for the 
orbit calculation, after having obtained the field in central coordinates, is an 
ugly and time-consuming method. We must remember the importance of speed 
in the programming of multiparticle problems. 

Indeed, it pays to go the opposite way and to take one’s cue from the field 
calculation for introducing an even better coordinate system than r and 0, namely 

I=lnr w 

and 19. Conformal mapping theory leads to the Laplace operator representation: 

and Poisson’s equation, for instance, looks just the same in Z, 19 coordinates as it 
does in x, y coordinates: 

a2@ a24, 
F+T= -4n+ p (14) 

= -41 x charge per unit cell in the [, 8 domain (15) 

(since r dr d0 = r2 dlde is the area element). 
As in conformal mapping, one can use 

z = x + iy, 

~=lnz=Z+iB 

(16) 

(17) 

to advantage, at least for the derivation of the procedures, even if one eventually 
decides against the use of complex-number routines in the computer. 

The dynamical equations 

r - r@ = b, , dV@ rb __ = 
dt tl, 

where br and b. are the radial and azimuthal accelerations, combine into 

f: + 5” = r-‘(b, + ib,J = a (19) 

The simplicity of this equation proves the value of the chosen coordinates. 
The square of a first derivative, somewhat like that appearing in the relativistic 

problem [Eq. (7)], can be replaced symmetrically as in the expression (II). More 
precisely, we use the following definitions: 

A=At, (20) 

A new = 5 %+I - t?L, (21) 

&a = in - L-1 . (22) 
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Then the recommended finite difference form of (19) becomes 

A new - Aold + A,,, Aold = ada, 

symmetric in time and linear in A,,, . 

(23) 

Cylindrical coordinates provide a simple method for incorporation of the 
Lorentz force due to a uniform, constant magnetic field parallel to the cylinder 
axis. One uses the Larmor frame of reference, rotating at angular velocity qB/2M, 
in which the Lorentz force is canceled by the Coriolis force. However a spurious 
centrifugal force appears in this frame and has to be corrected for by subtracting 
the constant (qB/2M)2 from “a”. 

To test the algorithm (23) which advances the particles through a field of force, 
we have considered the case of no fields, a = 0. This ought to give straight orbits, 
constant AZ. From (23), on dividing by A,,, Aold, 

A& = 1 + A&. 

Hence, by induction, 

Ai& = n + CotSt, 

and 

5, = L-1 + (n f q)-’ 

where 

4 = (5, - LY * 

(26) is the recursion formula for the Y-function [14] 

5, = w  + 4). 

An arbitrary constant, representing a scale, has been suppressed. 
For large positive IZ, 

(24) 

(25) 

(26) 

(27) 

(28) 

Yn + q) = ln(n + 4 + 4) + 0 (n + q + $I-” 

(see [14]), so that 

(29) 

z, = ec* = n + q + 4 + 0 (12 + q + 4)--l 

and the spacing becomes uniform, as hoped for. 
For large negative II = --I n 1, one must use the reflection formula [14] 

(30) 

vl(-4-[InI --4-+J)=~(-~+[I~I-4-!d-~~a~~(InI -q-&B), 
(31) 
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showing that 

(32) 

Comparing with (30), one sees that for a general complex q, both amplitude and 
phase of orbits steps will be different in past and future: There has been some 
inelastic scattering from the coordinate center. 

Take q in the form 

q = qr + iqi , 

and assume qi is positive for the sake of argument: 

tan n(q + 4) = i tanh n(qi - iqr - &) 

-1 - exp[-2vqi + 2ri(qr + &)I 
= ’ 1 + exp[--2vqr + 2?7i(qr + &)I 

(33) 

(34) 

63 i - 2i exp[--2nqi + 2ri(& + $)I 

when q1 is at all appreciable, say greater than +. Taking out the factor ei” separately 
in (32), we find 

.qnl = (-I n I + q + &)(l - hi exp[hi(qr + ~)I@% (35) 

representing an amplitude or angle correction (which it is, or what mixture of both, 
is determined by qr) of magnitude 2rre- zmi. In other words, for an orbit which 
misses the origin by a step size at least (q, 3 1) the change is no larger than 0.012, 
meaning 1.2% in speed or 0.70 in direction. When the orbit misses by two step 
sizes, the change is less than 2 x 10-5. 

For close approaches, one gets severe deflections, calculable from cot rrq as 
shown in formula (32). A nonvanishing but bounded acceleration “a” is not 
expected to change these estimates significantly since the “numerical” deflections 
are almost entirely attributable to the one step which brings the particle within a 
step size from the origin. For a singular central force one would have to perform 
some test runs in order to learn to distinguish between scattering of physical and 
numerical origin. 

It is interesting that the scattering, as in atomic scattering theory, is associated 
with a “Stokes Phenomenon” of the Y-function shown in formula (31), meaning 
that the asymptotic expansion for large positive argument is not valid for large 
negative argument. 

While the suggested time-symmetric algorithm (23) has not yet been tested on 
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a computer, the analytical study of errors due to scattering shows that one may 
approach the new procedure with optimism. The coordinate center (1 = --co) 
has to be treated as singular in other parts of the calculation (field integration) 
and precautions against scattering can be installed readily. As regards the speed 
of integration, the cylindrical routine (23), while certainly slower than the planar 
routine (absence of the product term on the left) is unlikely to become a bottleneck. 

IV. GYROCENTER MOTION 

As a fourth example we study a problem similar to the first, but in the limit of 
very slow field changes, measured on the scale of the gyroperiod 2740, where 

w = eB/m, (36) 

and also ignoring any forces or motion along the magnetic field. The magnetic 
field is uniform in direction, but we shall eventually allow a particle which traverses 
it to see a changing magnetic intensity. The electric field E is always perpendicular 
to B. 

In the first place, we record the formulas for cycloid fitting (described in Section I) 
as appropriate in this case [8]: 

%w-1- x?t = x, - G-1 
At hew , At = Void , 

ExB B 
V new --jjij-- = cosodt--x 

B 
sin wdt. 

(38) 

One sees how the velocity relative to a “guiding” center is turned through an angle 
oAt at every step. The guiding center moves at velocity 

vg = E X B/B2 (39 

and when this vector does not change between steps, the points x, - vgn At mark 
the comers of a polygon inscribed in a circle so that the points x, lie on a perfect 
cycloid, exactly where an analytical integration places them at the times t = ndt. 

Suppose, however, that there is a very slow change of E and/or B, perceptible 
only over many gyroperiods 240~. Do the points x, then trace out the ideal orbit, 
or at least an orbit which does not deviate secularly from the ideal ? 

In general, for arbitrary step size At and turning angle wdt, there will be 
increasing discrepancies between the ideal orbit and the points x, . Particularly 
for large step sizes, i.e., large angles odt, the discrepancies become increasingly 
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severe. This would prevent one from sampling the slowly varying field only 
infrequently and making each cycloidal stretch last for many gyroperiods. 

To get some quantitative data for this effect, we study a case which permits 
explicit elementary integration of the dynamical equations and also elementary 
solution of the recurrence relation (38). This is the case of an electric field varying 
linearly with time while B remains constant. It is convenient to study this case in 
a frame of reference in which the electric field appears to pass through zero at the 
time t = 0 (the linear relation between coordinates in the original and the new 
frame of reference would be reproduced accurately in the finite-difference 
procedure). 

In such a frame, one has E = fit where fi is constant, or E = IhAt for finite- 
difference calculations. Placing the x-axis along 8, one obtains 

2 $ w2x = e&t (40) 

after eliminating Jo from 

p = wit, (41) 

taking the origin x = 0 where9 = 0. A particular integral of (40) and (41) is 

x = eBt/io2, (42) 

k = e@02, (43) 

j = e&/w, (44) 

and a complementary solution in the form of a vector rotating steadily at angular 
velocity W, may be added to (43), (44). 

The velocity j = e&t/w represents gyrocenter motion according to the simple 
law vg = E x B/B2 which is sound when E is constant. The velocity component 
* = e&/m2 represents a correction, equal in magnitude to the change of the simple 
og during one gyro-radian period. The resultant of9 and 2 gives the true gyrocenter 
motion. 

One can now ask: does the recursion formula (38), obtained from cycloid fitting, 
yield true gyrocenter motion, including the correction, when E, = J&.zdt is used 
for E at each step ? 

Going to components in (38), and trying a solution in the form 

VIEW = e&n + Q) At/w, (45) 

&Ad = e&n - 4) At/w, (46) 

knew = &ld = const, (47) 
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one finds that such a solution does exist and one concludes that the most general 
solution of the recursion formula is obtained by adding the steadily rotating 
“polygon” solution. However, while the values of j,,, and ‘$Old are exactly those 
required to fit the analytic solution (44), the constant value off is not in agreement 
with (43), but is, instead, 

itnew = &,1,-j = 
e&At wAt 

-cot-. 
2w 2 (48) 

For moderate values of oAt/2, permitting the cotangent to be replaced by the 
inverse, the drift corrections (43) and (48) agree. However, for certain choices of 
the time increment, namely for wAt = 27r, 477, 67~ etc., the drift correction (48) 
becomes infinite and cycloid fitting gives an erroneous description of the secular 
behavior. Indeed, we see immediately that (38) yields the absurd result vnew = void 
for these choices of time increment. 

Nevertheless, the recursion formula (38) can be salvaged. When one tries to 
take large steps-the motivation being that the slowly varying field need only 
be sampled infrequently-and when there are no other cogent considerations to 
fix a definite step size At, a choice can be made such that (43) and (48) agree 
exactly. It means that wAt/2 must be identified with one of the solutions O1 ,8, .+. 
of the transcendental equation: 

0 = tan 8. (49) 

There is one such solution within every interval of length 7~. Thus one can always 
pick a value At as close as half a gyroperiod to any step size At’ which may be 
desirable from other considerations. 

For these restricted At-s, one can use the usual substitutions for sine and cosine 
in (38) in terms of half-angle tangents. This allows one to replace (38) by 

V new - y) (1 + w2 At2/4) = (Void - -1 (1 - w2 At2/4) 

; x (void - -1 wAt -- (50) 

and here we have a useful general formula, to be recommended for all orbit 
integrations in a magnetic field. It has the following features: 

(1) it is strictly time-reversible; 

(2) it leads to points on exact cycloids whenever E and B are constant; 

(3) for small and moderate wdt, it agrees with (38), thus associating the 
cycloidally arranged points with the correct time intervals between successive 
points; 
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(4) for linearly varying E and constant B it will reproduce the correct 
secular drifts of the gyrocenter, no matter what value of wdt is used; 

(5) for large wdt, useful in the case of arbitrarily but slowly varying fields, 
it reproduces the gyrocenter motion correctly; specifically, 

(6) as wAt --f co it reduces to the lowest gyrocenter approximation, 

(1/2At)(x,+, -- x,-,) = &mv + Void) = E X B/B* (51) 

in manifestly time-reversible form, but if the odd-even discrepancy is encountered 
with this approximation, a large finite wAt may be used in (50), to anchor the 
recursion procedure at x,; 

(7) when B varies (as well as E) and when At is kept fixed at a value rather 
larger than the range covered by l/w, the coefficients in (50) vary smoothly, unlike 
those in (38) which would vary erratically; 

(8) ironically-and not trivially-formula (50), constructed with the 
objective of getting good answer for very large steps, is exactly the solution of the 
original finite-difference form of the Lorentz equation (4) which was based on the 
assumption that steps remain small! 

The recursion formula (50) has been tested for speed and reliability in recent 
work by Hackney and Levy on the instability and breakup of certain crossed-field 
beam configurations. This work will be published shortly in the regular Physics 
literature but its history is of computational interest: Hackney and Levy began their 
computer experiments with the biassed irreversible guiding-center formula 
vnew = E x B/B2. They found exceptionally poor energy conservation and this 
was traced by Hackney to one-way effects arising from the biassed formula. 
Hackney then tried the time-symmetric equation (51) and found an odd-even 
discrepancy which became steadily worse. Eventually, he used (50) and obtained 
stability, adequate energy conservation, and performance of the system which 
agrees with certain physical observations. 

V. CONTINUITY EQUATIONS 

An Eulerian description of the dynamics of a continuous medium (or distri- 
bution) can contain first derivatives even under strictly reversible conditions 
(absence of dissipation). As examples, we quote the continuity equation 
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and the “collisionless” Boltzmann equation 

(53) 

where a is the acceleration. Only one space dimension is being considered here 
for the sake of simplicity. 

Partial differential equations of this type have received considerable dissipative processes such as 
diffusion, viscosity, and heat conduction, reversibility per se does not apply. 
Nevertheless, one ought to make sure that the diffusion, etc., observed in any 
computation is of truly physical and not of numerical origin, in the same way as 
one likes to check that numerical procedures do not introduce unphysical sources of 
mass, energy or momentum. Thus some attention to the symmetrical representation 
of the operator a/at is called for even in these studies. An unwanted “diffusion” 
is alluded to by Killeen and Rompel [15] in their integration of the collisionless 
Boltzmann equation when they use a manifestly unsymmetric difference operator, 
subsequently discarded in favor of a symmetric one [the equation following their 
Eq. (38)]. Their final routine, however, is essentially Leith’s [16] unsymmetrical 
scheme. Harlow [17] discusses entropy, but not in relation to difference methods. 

The classical account by Richtmyer [18] lists only three stable time-symmetric 
representations of a/at (out of thirteen), namely his case “2”, used by Crank and 
Nicholson [19] (the symmetry was inspired by Hartree in this case), the beautiful 
scheme “8” by Dufort and Frankel and scheme “12”. Incidentally, one finds that 
time-symmetric procedures, while not of themselves stable, are more easily 
analyzed for stability than unsymmetric procedures. This is borne out by 
Williamson’s survey [21] in which only scheme 1.7 and C.5 are symmetric. The 
articles by Gentry, Martin, and Daly [22] and Arakawa [23] appear to be concerned 
with unsymmetric (forward) difference schemes only. 

Numerical procedures would employ some mesh in x and t for (52) and a mesh 
in x, V, t for (53). A finite-difference version of (52) which is symmetric in x and t 
would state 

Patter - Pbefore + jright - jieft = o 
2At 2Ax (54) 

at each mesh point. The “present” value of p would not be referred to, nor would 
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the “central” value of j enter. Similar considerations apply to the Boltzmann 
equation, 

f after - fbefore + (Uf)rlght - (uf )left + 
2At 2Ax 

(af )fast - (af how = 0 
2Av (55) 

(here v is an independent, discretized variable, values at neighboring velocities 
being characterized by the subscripts “fast” and “slow”). 

The danger of “odd” and “even” mesh points getting out of step arises in these 
cases. As a precaution one can adopt the policy of simply ignoring odd x-values at 
even time steps and vice versa, working solely on the remaining mesh points. 
In other words, the x-mesh is “staggered” for alternate time steps, for the purposes 
of the continuity equation at least. In the Boltzmann equation, one can employ 
an “octahedral” lattice in x, v, t-space. “Leap-frogging” and the use of “interlaced” 
grids are not uncommon: see for instance Fromm’s [24] time-symmetric schemes. 

The feasibility of this procedure depends upon whether, in the case of the 
continuity equation, thej-data are available in just the cells where they are needed, 
or whether the p-data are needed in just the cells where they are supplied. If the 
entire dynamical calculation is carried out in the Eulerian mode, and provided 
there is no dissipation, then one usually finds that supply and demand of data for 
various quantities is just in keeping with this staggering. Indeed, one suspects that 
it should be possible to state some general theorem along these lines and prove it 
from a Hamiltonian describing the entire system. There is probably also some 
connection with the “Hermiticity” of matrices describing reversible evolution of 
systems. 

As a simple example, consider a cold collisionless charged fluid governed by (52) 
with j = pv and the Eulerian dynamical equation 

(56) 

where 

q)(aE/ax) = p. (57) 

Records of p and v over a diamond-shaped grid in space-time, together with a 
record of E at the midpoints of the diamonds, allow progressive determination of 
all quantities using simple central differences for space and time derivatives. A 
pressure related top by a simple equation of state can also be incorporated and has 
to be recorded at the same points as p and v. The scheme is stable when (At)-l 
exceeds wP + I v I/Ax where wp is the plasma frequency (pq/me,J1/2. 

In three dimensions, a cold charged fluid whose canonical momentum p + qA 
is irrotational can be dealt with similarly, and the whole set of Maxwell’s equations 
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can be integrated simultaneously provided one records and processes the data as 
follows: 

ppv . . . . . . . . . . . . . . . . . . p . . ..*.....*...*... p,v 
B . . . . . . . . . . . . . . . . . . . p,v . . . . . . . . . . . . . . . . . . . B 

p,v ,.a.. f . . . . . . j . . . . . B . . . . . . . . . . . . . . . . . . . . . p,v ; 
; 
: 

: : : . . . : : 

Shown here is the record at even time steps. B-values and p, v-values are staggered 
like Na and Cl in salt. From these data one calculates div pv at the B-lattice points, 
permitting one to update the odd-time p-values in the table below. One also forms 
curl B at the p, v-lattice points to update E in the table below from Maxwell’s 

aE 
- = c curl B - PV/E,, . 
at (58) 

Unbiassed values of (E) are then formed at the B-lattice points as averages of the 
six previous nearest E-data and the six subsequent nearest E-data just calculated. 
(E) need not be retained in memory, it is only needed locally for the updating of 
v in the table below from grad(+u2)-values at the B-lattice in the table above, using 

av 
Ft= -grad()u2) - 2 (E). (59) 

E . . . . . . . . . . f...p,v . . . . . . . . . . . . . . . E 
p,v . . . . . e.......... . 

F 

. . . . . $ . . . . . . . . . . p;v 
. . . . . . f . . . . . . ;...p,v . . . . < .*.... f . . . . F 

: 
: : 

. . 
: . i ; : : : f 
: i : : i : . i . 

. . 
. 

i ; . . . . Y..:..r . . . . p;lJ . . . . . . . . . . . L..... E 
..: . . . . . . i . . . . . . c . . . . i . . . . . . . . . . . p;v 

p;v . . . ..I . . . . ..I . . . . E... . ..> . . . . . . i...p;v ; 
; 
: 

: . . . , : : : . . . . : : 

. ; . ...: . . . . . . . i . . . . p;v...:i ,..... .i . . . . . . . 
. . . . . . . . . ..I . . . . . . . E . . . . . . . . . . . . . i . . . . p;v 

. . . . . . . . . . . . . . . . . . p’,v . . . . . . . . . . . . . . . . E 
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Shown here is the record at odd time steps from which divpv can be formed at 
the E-lattice points to update p in the table above, curl E can be formed at the 
p, v-lattice points for the updating of B by Maxwell’s 

aB/at = -curl E (60) 

and grad (+v2) is obtained at the E-lattice to update v in the scheme above, using 
the available E rather than the average as in (59). 

Since a hot plasma can be described as a superposition of a large number of cold 
irrotational streams [25], or since the indicated data arrangement, with additional 
staggering in velocity space, can also be used for the integration of Boltzmann’s 
equation, one has strong evidence of the universality of this scheme. 

SUMMARY 

In conclusion, we observe that in five specific examples the requirements of 
time-symmetric programming has raised interesting but surmountable problems. 
In all cases, it has been possible to develop techniques which are not only time- 
reversible but also aesthetically more pleasing, even simpler, than the objectionable, 
biased, forward-difference procedures. 
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